Modern Cardiac MRI

David S. Fieno, M.D., Ph.D.

Heart South Cardiovascular
Alabaster, Alabama
Overview

• Introduction to CMR
• Assessment of Myocardial Infarction
• Applications of Viability Imaging
• Conclusions
Overview

• Introduction to CMR

• Assessment of Myocardial Infarction

• Applications of Viability Imaging

• Conclusions
Infarction
Background

In the United States

- >1 million myocardial infarctions per year, vast majority of which are caused by CAD
- Atherosclerosis affects > 10 million people

Heart disease is also a problem worldwide
Long and Short Axis Views

Long Axis View

Short Axis View
Aortic outflow Tract

Perpendicular View

From Cedars-Sinai Medical Center
Contrast-enhanced CMR

Pre-Gd
Post-Gd
Disease and Diagnostic Modality
Overview

• Introduction to CMR

• Assessment of Myocardial Infarction

• Applications of Viability Imaging

• Conclusions
Contrast-enhanced CMR

Pre-Gd

Post-Gd
High Resolution Ex Vivo

500 µm

X

500 µm

X

500 µm
Delayed Enhancement
Viability Assessment

TTC
Histopathology Comparison

TTC

MRI
TTC vs. Hyperenhancement

TTC vs MRI

3 days
Reperfused MI
Conclusion

Delayed gadolinium enhancement by CMR represents irreversible myocardial injury (dead regions)
(Bright is dead)
In vivo – Function & Viability

Cine MRI

Gd Enhanced
Overview

- Introduction to CMR
- Assessment of Myocardial Infarction
- Applications of Viability Imaging
- Conclusions
Clinical Viability

- 67 yo with h/o 3-vessel CAD s/p PCI 1 yr ago c/o progressive fatigue
 - Stress radionuclide imaging evidence of reversible ischemia at the base and severe left ventricular dysfunction (EF of 26%)
Cine - Pre

\[EF = 34\% \]

Cine - Post

\[4 \text{ months} \]

\[EF = 55\% \]
Clinical Viability

• 52 yo female present with new onset of typical angina
Clinical Viability

• Are there data that support the utility of CMR viability assessment for directing revascularization?
Clinical Viability

- 50 patients were studied pre versus post revasc
- Reversible myocardial dysfunction was identified by contrast-enhanced MRI before coronary revascularization.

Kim et al, NEJM, 2000;343:1445–53
Clinical Viability

• Are there additional role of CMR viability assessment for directing therapies?
 – Ventricular reconstruction
 – Prediction of functional recovery after revascularization
 – Prediction of sudden cardiac death
Background

• Sudden cardiac death kills 400,000 people in the US each year

• Most sudden cardiac deaths are believed to be due to arrhythmias

• 2-15% of such patients reach the hospital
Background

- Myocardial scar size is related to inducibility of VT

Hypothesis

- Infarct characteristics predict inducible ventricular arrhythmias during invasive electrophysiologic study

Bello, Fieno et al, JACC, 2005; 45:1104–8
Study Population

• 48 patients with informed consent to MRI protocol were enrolled from Northwestern Memorial Hospital and Lakeside Veterans Administration

• All patients had coronary artery disease

• All patients were undergoing invasive electrophysiological testing

Bello, Fieno et al, JACC, 2005; 45:1104–8
Image Analysis

Diastole Systole Contrast Contours

Base
Mid
Apex
Electrophysiologic Testing

• Patients were studied with a standard electrophysiologic protocol

• Inducibility was characterized as follows:
 – Non-inducible
 – Sustained Monomorphvic Ventricular Tachycardia
 – Polymorphic Ventricular Tachycardia, Ventricular Fibrillation, or Ventricular Flutter
Patient 1: CAD, LV dysf, EF< 30% Inducible Mono VT
Patient 2: CAD, LV dysf, EF< 30% Non - Inducible
Patient 3: CAD, EF > 30% Inducible Mono VT
Patient 4: CAD, EF > 30% Non-Inducible
Receiver-Operator Curves

Sensitivity

1 - Specificity

- Infarct Surface Area
- Infarct Mass
- Ejection Fraction
Conclusions

• Infarct size is a better predictor for inducible monomorphic ventricular tachycardia than ejection fraction
Clinical Implications

• Cardiac MRI could be an important test to identify patients at risk for sudden cardiac death
Prevention following MI

• To establish who is at risk:
 – Echo
 – Holter
 – EP testing
 – Heart rate variability
 – SAECG
 – T wave alternans
 – Stress test (nuclear or echo)
 – Coronary angiography

Contrast enhanced MRI
Overview

• Introduction to CMR

• Assessment of Myocardial Infarction

• Applications of Viability Imaging

• Conclusions
Conclusions

• Delayed gadolinium enhancement represents irreversible myocardial injury
Conclusions

• Clinical applications of CMR assessment of myocardial viability include:

 – Prediction of recovery after revascularization

 – Planning for ventricular reconstruction

 – Assessment of myocardial scar size
Thank you

Cine MRI
Gd Hyperenhanced